Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 614(7948): 530-538, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2185938

RESUMEN

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Autorrenovación de las Células , Macrófagos Alveolares , Neutrófilos , Animales , Ratones , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Lesión Pulmonar Aguda , Animales Recién Nacidos , Araquidonato 12-Lipooxigenasa/deficiencia , Araquidonato 15-Lipooxigenasa/deficiencia , COVID-19 , Virus de la Influenza A , Lipopolisacáridos , Pulmón/citología , Pulmón/virología , Macrófagos Alveolares/citología , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Infecciones por Orthomyxoviridae , Prostaglandinas E , SARS-CoV-2 , Susceptibilidad a Enfermedades
3.
Front Immunol ; 13: 851497, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1775682

RESUMEN

Introduction: Coronavirus disease 2019 (COVID-19) can cause life-threatening acute respiratory distress syndrome (ARDS). Recent data suggest a role for neutrophil extracellular traps (NETs) in COVID-19-related lung damage partly due to microthrombus formation. Besides, pulmonary embolism (PE) is frequent in severe COVID-19 patients, suggesting that immunothrombosis could also be responsible for increased PE occurrence in these patients. Here, we evaluate whether plasma levels of NET markers measured shorty after admission of hospitalized COVID-19 patients are associated with clinical outcomes in terms of clinical worsening, survival, and PE occurrence. Patients and Methods: Ninety-six hospitalized COVID-19 patients were included, 50 with ARDS (severe disease) and 46 with moderate disease. We collected plasma early after admission and measured 3 NET markers: total DNA, myeloperoxidase (MPO)-DNA complexes, and citrullinated histone H3. Comparisons between survivors and non-survivors and patients developing PE and those not developing PE were assessed by Mann-Whitney test. Results: Analysis in the whole population of hospitalized COVID-19 patients revealed increased circulating biomarkers of NETs in patients who will die from COVID-19 and in patients who will subsequently develop PE. Restriction of our analysis in the most severe patients, i.e., the ones who enter the hospital for COVID-19-related ARDS, confirmed the link between NET biomarker levels and survival but not PE occurrence. Conclusion: Our results strongly reinforce the hypothesis that NETosis is an attractive therapeutic target to prevent COVID-19 progression but that it does not seem to be linked to PE occurrence in patients hospitalized with COVID-19.


Asunto(s)
COVID-19 , Trampas Extracelulares , Embolia Pulmonar , Síndrome de Dificultad Respiratoria , Biomarcadores , COVID-19/complicaciones , Humanos , Embolia Pulmonar/etiología , Síndrome de Dificultad Respiratoria/etiología
4.
Journal of Clinical Investigation ; 132(7):0_1,1-3, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-1775055

RESUMEN

Although the memory capacity of innate immune cells, termed trained immunity (TI), is a conserved evolutionary trait, the cellular and molecular mechanisms involved are incompletely understood. One fundamental question is whether the induction of TI generates a homogeneous or heterogeneous population of trained cells. In this issue of theJCI, Zhang, Moorlag, and colleagues tackle this question by combining an in vitro model system of TI with single-cell RNA sequencing. The induction of TI in human monocytes resulted in three populations with distinct transcriptomic profiles. Interestingly, the presence of lymphocytes in the microenvironment of monocytes substantially impacted TI. The authors also identified a similar population of monocytes in various human diseases or in individuals vaccinated with bacillus Calmette-Guérin. These insights warrant in-depth analysis of TI in responsive versus nonresponsive immune cells and suggest that modulating TI may provide a strategy for treating infections and inflammatory diseases.

5.
Eur J Radiol ; 144: 109960, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1415380

RESUMEN

PURPOSE: High-resolution free-breathing late gadolinium enhancement (HR-LGE) was shown valuable for the diagnosis of acute coronary syndromes with non-obstructed coronary arteries. The method may be useful to detect COVID-related myocardial injuries but is hampered by prolonged acquisition times. We aimed to introduce an accelerated HR-LGE technique for the diagnosis of COVID-related myocardial injuries. METHOD: An undersampled navigator-gated HR-LGE (acquired resolution of 1.25 mm3) sequence combined with advanced patch-based low-rank reconstruction was developed and validated in a phantom and in 23 patients with structural heart disease (test cohort; 15 men; 55 ± 16 years). Twenty patients with laboratory-confirmed COVID-19 infection associated with troponin rise (COVID cohort; 15 men; 46 ± 24 years) prospectively underwent cardiovascular magnetic resonance (CMR) with the proposed sequence in our center. Image sharpness, quality, signal intensity differences and diagnostic value of free-breathing HR-LGE were compared against conventional breath-held low-resolution LGE (LR-LGE, voxel size 1.8x1.4x6mm). RESULTS: Structures sharpness in the phantom showed no differences with the fully sampled image up to an undersampling factor of x3.8 (P > 0.5). In patients (N = 43), this acceleration allowed for acquisition times of 7min21s ± 1min12s at 1.25 mm3 resolution. Compared with LR-LGE, HR-LGE showed higher image quality (P = 0.03) and comparable signal intensity differences (P > 0.5). In patients with structural heart disease, all LGE-positive segments on LR-LGE were also detected on HR-LGE (80/391) with 21 additional enhanced segments visible only on HR-LGE (101/391, P < 0.001). In 4 patients with COVID-19 history, HR-LGE was definitely positive while LR-LGE was either definitely negative (1 microinfarction and 1 myocarditis) or inconclusive (2 myocarditis). CONCLUSIONS: Undersampled free-breathing isotropic HR-LGE can detect additional areas of late enhancement as compared to conventional breath-held LR-LGE. In patients with history of COVID-19 infection associated with troponin rise, the method allows for detailed characterization of myocardial injuries in acceptable scan times and without the need for repeated breath holds.


Asunto(s)
COVID-19 , Gadolinio , Medios de Contraste , Humanos , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Espectroscopía de Resonancia Magnética , Masculino , Valor Predictivo de las Pruebas , SARS-CoV-2
7.
Clin Kidney J ; 14(4): 1289-1290, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1069247
8.
Clin Kidney J ; 13(3): 354-361, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-549250

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19)-associated acute kidney injury (AKI) frequency, severity and characterization in critically ill patients has not been reported. METHODS: Single-centre cohort performed from 3 March 2020 to 14 April 2020 in four intensive care units in Bordeaux University Hospital, France. All patients with COVID-19 and pulmonary severity criteria were included. AKI was defined using Kidney Disease: Improving Global Outcomes (KDIGO) criteria. A systematic urinary analysis was performed. The incidence, severity, clinical presentation, biological characterization (transient versus persistent AKI; proteinuria, haematuria and glycosuria) and short-term outcomes were evaluated. RESULTS: Seventy-one patients were included, with basal serum creatinine (SCr) of 69 ± 21 µmol/L. At admission, AKI was present in 8/71 (11%) patients. Median [interquartile range (IQR)] follow-up was 17 (12-23) days. AKI developed in a total of 57/71 (80%) patients, with 35% Stage 1, 35% Stage 2 and 30% Stage 3 AKI; 10/57 (18%) required renal replacement therapy (RRT). Transient AKI was present in only 4/55 (7%) patients and persistent AKI was observed in 51/55 (93%). Patients with persistent AKI developed a median (IQR) urine protein/creatinine of 82 (54-140) (mg/mmol) with an albuminuria/proteinuria ratio of 0.23 ± 20, indicating predominant tubulointerstitial injury. Only two (4%) patients had glycosuria. At Day 7 after onset of AKI, six (11%) patients remained dependent on RRT, nine (16%) had SCr >200 µmol/L and four (7%) had died. Day 7 and Day 14 renal recovery occurred in 28% and 52%, respectively. CONCLUSION: Severe COVID-19-associated AKI is frequent, persistent, severe and characterized by an almost exclusive tubulointerstitial injury without glycosuria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA